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A B S T R A C T

We consider electric dipole radiation emitted near an interface with an epsilon-near-zero (ENZ) material. Such
a medium is nearly impenetrable for electromagnetic plane waves, but we show that dipole radiation can
penetrate deep into the medium. The radiation is represented by an angular spectrum of plane waves, and
each partial wave transmits as an evanescent wave. The sum of these waves, however, is not evanescent, but
decays algebraically with the distance to the interface. We have evaluated the electric and magnetic fields
inside the material, and we have constructed the Poynting vector. We found that energy flows through the
material, and not only in a small region near the interface. For the case of a perpendicular dipole, the magnetic
field is zero, and the electric field can be obtained in closed form. We show that the electric field decays as
the third power of the distance to the interface.
. Introduction

An epsilon-near-zero (ENZ) material has a near-zero index of re-
raction. When an electromagnetic plane wave with angular frequency

is incident upon an interface with an ENZ medium, all radiation
s reflected. The Fresnel reflection coefficients 𝑅𝑠 and 𝑅𝑝 for s and p
aves, respectively, are equal to unity in magnitude. Upon reflection,
phase shift occurs, but no radiative energy penetrates the material.

nside the material, there can still be electric and magnetic fields, but
hese are confined to a small layer near the interface. These evanescent
ields decay exponentially into the material, and they propagate into
he direction parallel to the interface. An exception to this general pic-
ure occurs for a plane wave at near normal incidence [1]. An electric
ield is present throughout the ENZ material, but the magnetic field is
dentically zero. The electric field oscillates with angular frequency 𝜔,
ut it has no spatial dependence. This peculiar phenomenon is referred
o as ‘static optics’. For a material with near-zero refractive index, the
ave number in the material is near-zero, and therefore the wavelength
pproaches infinity. Consequently, the electric field in the material
an have no spatial dependence. Since the magnetic field is zero, the
oynting vector is zero, and no energy flow is associated with this
scillating electric field.

ENZ materials have been predicted to have a host of interesting
roperties. With the quasi-static field that is transmitted into the mate-
ial at near normal incidence, it should be possible to tunnel radiation
hrough the material without loss of phase information [2–7]. This
ould allow for transmission through bends of arbitrary shape. Since

his radiation only transmits at near normal incidence, it should be
ossible to construct angular filters based on this principle [8–11].
ost notably, an electric dipole may levitate when it is located close

E-mail address: hfa1@msstate.edu.

to the interface of an ENZ material [12–15]. Metamaterial ENZ media
have been constructed in the microwave and terahertz regions of the
spectrum [16–20], and more recently in the optical region [21–23].

The notion that ENZ materials are impenetrable for radiation de-
rives from the consideration of traveling incident plane waves. We shall
consider electric dipole radiation, which contains both traveling and
evanescent waves. The evanescent reflected dipole waves are responsi-
ble for the predicted levitation. Here we shall investigate the possible
transmission of electric dipole radiation into an ENZ medium. In an
angular spectrum representation, the dipole field is a superposition
of traveling and evanescent plane waves. These waves are incident
upon the ENZ interface, and each wave transmits into the medium
as an evanescent wave. It may therefore stand to reason that the
transmitted dipole field is evanescent, and no energy can propagate into
the material. We shall show that this is not the case.

2. Dipole near an interface

An oscillating electric dipole has a dipole moment

𝐝(𝑡) = Re(𝐝𝑒−𝑖𝜔 𝑡), (1)

with d the complex amplitude. We consider the dipole to be located
a distance H from an interface, as shown in Fig. 1. The dipole is
embedded in a medium with (relative) permittivity 𝜀1, assumed to
be positive, and the medium has a permittivity 𝜀2. The interface is
the xy plane, and the positive z axis is taken as shown in the figure.
The incident dipole radiation, symbolically represented by the wave
vector 𝐤𝑖, is a superposition of traveling and evanescent waves. The
evanescent waves decay in the positive z direction, as schematically
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Fig. 1. Shown is the setup of a dipole near the interface with a medium. Each partial
incident dipole wave reflects at the interface and transmits through the interface.

indicated by the horizontal lines. Each partial dipole wave reflects
(𝐤𝑟) at the interface, and part of the incident radiation is transmitted
into the medium (𝐤𝑡). Due to boundary conditions, each of the three
wave vectors must have the same parallel component 𝐤∥. The relative
amplitudes of the reflected and transmitted waves, with respect to the
incident wave, are expressed as Fresnel reflection coefficients 𝑅𝜎 and
transmission coefficients 𝑇𝜎 , where 𝜎 = 𝑠 or p indicates the polarization
of the wave.

We shall consider a dipole moment d which lies in the yz plane,
and we set 𝐝 = 𝑑o�̂� with 𝑑o > 0 and �̂�∗ ⋅ �̂� = 1. When �̂� is real, this
represents a linear dipole, and when �̂� is complex, this is an elliptical
dipole. In the region below the interface, the electric and magnetic
fields are superpositions of the source fields and the reflected fields,
and in the medium the fields are the transmitted fields by the interface.
We shall set

𝐄(𝐫) = 𝜁 �̃�(𝐫), (2)

𝐁(𝐫) = 𝜁
𝑐
�̃�(𝐫), (3)

for the complex amplitudes of the electric and magnetic fields, and here
the overall constant 𝜁 is defined as

=
𝑘3o𝑑o
4𝜋𝜀o

, (4)

with 𝑘o = 𝜔∕𝑐 as the wave number in free space. We shall consider the
fields in the yz plane.

The source field is the field of a dipole embedded in a medium with
permittivity 𝜀1, and is given by

�̃�𝑠 =
{

�̂� − (�̂�1 ⋅ �̂�)�̂�1 +
[

�̂� − 3(�̂�1 ⋅ �̂�)�̂�1
] 𝑖
𝑛1𝑞1

(

1 + 𝑖
𝑛1𝑞1

)}

𝑒𝑖𝑛1𝑞1
𝑛1𝑞1

, (5)

�̃�𝑠 =
(

�̂�1 × �̂�
)

(

1 + 𝑖
𝑛1𝑞1

)

𝑒𝑖𝑛1𝑞1
𝑛1𝑞1

. (6)

ere, 𝐪1 = 𝑦𝐞𝑦 + (𝑧 + ℎ)𝐞𝑧, with 𝑦 = 𝑘o𝑦, 𝑧 = 𝑘o𝑧, is the dimensionless
position vector of the field point with respect to the location of the
dipole, and 𝑞1 = |𝐪1|, �̂�1 = 𝐪1∕𝑞1. The parameter ℎ = 𝑘o𝐻 is the
dimensionless distance between the dipole and the interface, and 𝑛1 =
√

𝜀1 is the index of refraction of the embedding medium.
The reflected and transmitted fields can be found by expanding the

ource fields of Eqs. (5) and (6) in an angular spectrum representation.
ach partial wave is a polarized plane wave which is incident upon the
nterface, and the reflected and transmitted fields can be constructed
ith the help of Fresnel reflection and transmission coefficients for
lane waves. In an angular spectrum representation, the wave vector
∥ from Fig. 1 is the integration (superposition) variable, and 𝛼 = 𝑘∥∕𝑘o

is its dimensionless magnitude. The Fresnel coefficients depend on 𝛼,
and are explicitly

𝑅𝑠(𝛼) =
𝑣1 − 𝑣2 , (7)

𝑣1 + 𝑣2 𝑇

2

𝑅𝑝(𝛼) =
𝜀2𝑣1 − 𝜀1𝑣2
𝜀2𝑣1 + 𝜀1𝑣2

, (8)

𝑇𝑠(𝛼) =
2𝑣1

𝑣1 + 𝑣2
, (9)

𝑇𝑝(𝛼) = 𝑛2
2𝑛1𝑣1

𝜀2𝑣1 + 𝜀1𝑣2
. (10)

ere we have set

𝑘 =
√

𝜀𝑘 − 𝛼2, 𝑘 = 1, 2, (11)

and 𝑛2 =
√

𝜀2. The dimensionless z components of the wave vectors 𝐤𝑖
and 𝐤𝑟, shown in Fig. 1, are 𝑣1 and −𝑣1, respectively. Since we assume
𝜀1 > 0, the value of 𝑣1 is either positive or positive imaginary. For 0 ≤
𝛼 < 𝑛1, 𝑣1 is real, and the incident and reflected waves are traveling. For
𝛼 > 𝑛1, both waves are evanescent, and decay into the direction away
from the interface. For a traveling incident wave we have 𝛼 = 𝑛1 sin 𝜃𝑖,
with 𝜃𝑖 the angle of incidence, and for an evanescent incident wave,
1∕𝛼 is the (dimensionless) decay length of the exponentially decaying
wave.

The reflected fields in the yz plane are found to be [24]

�̃�𝑟 = 𝑢𝑦𝐞𝑦(R (1)
𝑠 + R (1)

𝑝 ) + 𝑢𝑧𝐞𝑧R (3)
𝑝 + sgn(𝑦)(𝑢𝑧𝐞𝑦 − 𝑢𝑦𝐞𝑧)R (4)

𝑝 , (12)

�̃�𝑟 = −𝑢𝑦𝐞𝑥(R (4)
𝑠 + R (6)

𝑝 ) − sgn(𝑦)𝑢𝑧𝐞𝑥R (7)
𝑝 . (13)

The auxiliary functions R (𝑖)
𝜎 are Sommerfeld-type integrals, and are de-

fined in Appendix. They are functions of the dimensionless coordinates
𝜌 = 𝑘o𝜌 and 𝑧 = 𝑘o𝑧. The transmitted fields are

�̃�𝑡 = 𝑢𝑦𝐞𝑦(T (1)
𝑠 + T (1)

𝑝 ) + 𝑢𝑧𝐞𝑧T (3)
𝑝 + sgn(𝑦)𝑢𝑧𝐞𝑦T (4)

𝑝 + sgn(𝑦)𝑢𝑦𝐞𝑧T (5)
𝑝 , (14)

�̃�𝑡 = −𝑢𝑦𝐞𝑥(T (4)
𝑠 + T (7)

𝑝 ) − sgn(𝑦)𝑢𝑧𝐞𝑥T (8)
𝑝 , (15)

ith the functions T (𝑖)
𝜎 given in the Appendix. The electric fields are in

he yz plane, and the magnetic fields are along the x axis.

. Fresnel coefficients for an ENZ interface

For an ENZ medium we have 𝜀2 → 0, 𝑛2 → 0, and we now consider
his limit. The first observation is that with Eq. (11) we have

2 = 𝑖𝛼. (16)

epending on 𝛼, the incident wave is traveling or evanescent. Since
2 is the z component of the wave vector in the ENZ material, we
onclude that all transmitted waves are evanescent. An exception is
= 0, corresponding to normal incidence. Then 𝑣3 = 0, so there is

o z dependence in the transmitted wave. The wave travels along the
y plane, is constant in amplitude in the z direction, and oscillates with
ngular frequency 𝜔. This is the static optics case of transmission into
n ENZ medium.

With 𝑣2 = 𝑖𝛼 we find from Eqs. (7) and (9) for s waves

𝑠(𝛼) =
1
𝜀1

(𝑣1 − 𝑖𝛼)2, (17)

𝑠(𝛼) =
2
𝜀1

𝑣1(𝑣1 − 𝑖𝛼). (18)

For a traveling incident wave, 0 ≤ 𝛼 < 𝑛1, we have 𝛼 = 𝑛1 sin 𝜃𝑖 and
𝑣1 = 𝑛1 cos 𝜃𝑖, with 𝜃𝑖 the angle of incidence. We can then write Eqs.
(17) and (18) as

𝑅𝑠(𝛼) = 𝑒−2𝑖𝜃𝑖 , (𝑡𝑟), (19)

𝑇𝑠(𝛼) = 2 cos 𝜃𝑖𝑒−𝑖𝜃𝑖 (𝑡𝑟). (20)

o 𝑅𝑠 lies on the unit circle in the complex plane, and its magnitude
s unity. For an evanescent incident wave, 𝛼 > 𝑛1, 𝑅𝑠 is real, and
1 < 𝑅𝑠 < 0. Fig. 2 shows 𝑅𝑠 in the complex plane. It can be shown

rom Eqs. (17) and (18) that
𝑠(𝛼) = 1 +𝑅𝑠(𝛼), (21)
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Fig. 2. The graph illustrates the values of 𝑅𝑠 as a function of 𝛼 in the complex plane.

Fig. 3. Shown is the Fresnel transmission coefficient for s waves in the complex plane,
as a function of 𝛼.

for all 𝛼. Fig. 3 shows 𝑇𝑠 in the complex plane.
For p waves, we find immediately from Eq. (8)

𝑅𝑝(𝛼) = −1, (22)

since 𝜀2 = 0. Unlike for s waves, the reflection coefficient does not
depend on the angle of incidence for traveling waves, and the reflection
coefficient for evanescent waves is unity in magnitude for all 𝛼. It seems
to follow from Eq. (10) that 𝑇𝑝 = 0 since 𝑛2 = 0. However, for 𝛼 = 0
and 𝑛2 ≠ 0 we have 𝑣1 = 𝑛1 and 𝑣2 = 𝑛2 with Eq. (11). With 𝜀𝑘 = 𝑛2𝑘
this gives 𝑇𝑝 = 2𝑛1∕(𝑛1 + 𝑛2). For 𝑛2 → 0 this gives 𝑇𝑝 = 2. We therefore
conclude

lim
𝜀2→0

𝑇𝑝(𝛼) =

{

2, 𝛼 = 0
0, 𝛼 ≠ 0

. (23)

It is interesting to notice that both for 𝛼 ≠ 0 and 𝛼 = 0 the term 𝜀2𝑣1
in the denominator in Eq. (10) is always much smaller than the term
𝜀1𝑣2 for 𝜀2 small. Therefore

𝑇𝑝(𝛼) ≈ 2
𝑣1
𝑛1

𝑛2
𝑣2

, 𝜀2 small, (24)

and in the limit 𝜀2 → 0 this becomes exact. Figs. 4 and 5 show the real
and imaginary parts, respectively, of the exact 𝑇𝑝 and its approximation
by the right-hand side of Eq. (24). It appears that the approximation is
near perfect. Eq. (24) will prove useful in the next section.

4. Fields

The reflected and transmitted electric and magnetic fields are ex-
pressed in terms of 15 auxiliary functions, listed in the Appendix. We
now consider the limit 𝜀2 → 0 for these functions. For the reflected
waves we substitute 𝑅𝑠 and 𝑅𝑝 from Eqs. (17) and (22) into Eq. (A.5)
for the associated functions 𝑟𝑠 and 𝑟𝑝. Nothing else simplifies for the r
waves.

More interesting are the transmitted waves into the ENZ material.
First, we have 𝑣 = 𝑖𝛼, and this factor appears in 3 integrands. It
2

3

Fig. 4. The figure shows the real part of 𝑇𝑝 (solid curve) and its approximation (dashed
curve) by the real part of the right-hand side of Eq. (24) as a function of 𝛼. The
parameters are 𝜀1 = 6 and 𝜀2 = 0.01 ∗ (1 + 𝑖).

Fig. 5. The figure shows the imaginary part of 𝑇𝑝 (solid curve) and its approximation
(dashed curve) by the imaginary part of the right-hand side of Eq. (24) as a function
of 𝛼. The parameters are 𝜀1 = 6 and 𝜀2 = 0.01 ∗ (1 + 𝑖).

lso appears in the associated functions 𝑡𝜎 from Eq. (A.2), which now
become

𝑡𝜎 (𝛼, 𝑧) = 𝑇𝜎
1
𝑣1

𝑒𝑖𝑣1ℎ𝑒−𝛼 𝑧. (25)

he 𝑧 dependence of the auxiliary functions only comes in through the
associated functions, and we see that this as exp(−𝛼 𝑧). Therefore, all
integrands decay exponentially in the positive z direction, correspond-
ing to evanescent waves. This also shows that all T (𝑖)

𝜎 functions have
the form of a Laplace transform with 𝑧 as the Laplace parameter. Then
we substitute Eq. (18) for 𝑇𝑠 in 𝑡𝑠 in Eq. (25). Next, for 𝜀2 → 0 we have
2 → 0, and this immediately gives

(7)
𝑝 (𝜌, 𝑧) = T (8)

𝑝 (𝜌, 𝑧) = 0. (26)

hese functions only show up in Eq. (15) for the transmitted magnetic
ield, which now simplifies to

̃
𝑡 = −𝑢𝑦𝐞𝑥T(4)

𝑠 . (27)

he integrals T (𝑖)
𝑝 with 𝑖 = 1, 3, 4 and 5 have an overall factor of 1∕𝑛2,

hich appears problematic for 𝑛2 → 0. However, they also have a factor
𝑝, which goes to zero with Eq. (23). Here we use Eq. (24) to find the
imit 𝜀2 → 0 for these integrals. We have

lim
2→0

𝛼
𝑛1𝑛2

1
𝑣1

𝑇𝑝 = − 2𝑖
𝜀1

, (28)

and in this fashion the limit exists. Now all dependence of the auxiliary
functions on 𝜀2 has disappeared. This means that we do not just have
‘epsilon near zero’, but the limit 𝜀 → 0.
2
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5. Field lines of the Poynting vector

Electromagnetic energy flows along the field lines of the (time-
averaged) Poynting vector, defined as

𝐒(𝐫) = 1
2𝜇o

Re[𝐄(𝐫)∗ × 𝐁(𝐫)]. (29)

e set

(𝐫) = 𝑆o𝝈(𝐫), (30)

ith

o =
𝜁2

2𝜇o𝑐
, (31)

which gives

𝝈(𝐫) = Re[�̃�(𝐫)∗ × �̃�(𝐫)], (32)

for the dimensionless Poynting vector 𝝈 in terms of the dimensionless
fields. In region 1 the electric and magnetic fields are the sums of the
source fields and the reflected fields, and in region 3 the fields are the
transmitted fields.

Given the fields �̃� and �̃� found above, the Poynting vector in
each region can be constructed and we can find field lines through
given points by numerical integration. The only parameters left in the
problem are 𝜀1, h and the components 𝑢𝑦 and 𝑢𝑧 of the dipole moment
polarization vector. For a linear dipole in the yz plane we can specify
the angle 𝛾 with the positive z axis, rather than 𝑢𝑦 and 𝑢𝑧 separately.
Then we have 𝑢𝑦 = sin 𝛾 and 𝑢𝑧 = cos 𝛾.

It can be shown on general grounds [25] that the total power cross-
ing an ENZ interface (half-infinite medium) is zero for any choice of
parameters. This does not mean that no power can cross the interface.
When power crosses the interface at some point, it has to return to
the lower medium at some other point. This oscillating of energy back
and forth through an interface already happens when dipole radiation
transmits into a thinner medium [24]. When a field line of energy flow
enters the thinner medium, it bends away from the normal, similar to
an optical ray, and if it bends enough, it can come back to the original
medium. Apparently, an ENZ medium is the ultimate ‘thin’ medium,
and all power eventually returns to the thicker medium where the
dipole is located.

An example of energy flow is shown in Fig. 6 for a rotating dipole
moment. The y axis is to the right, the z axis is up, and the dipole
location is indicated by a black dot. The dipole moment rotates coun-
terclockwise in the yz plane, and the field lines have a counterclockwise
swirling appearance. We see on the left-hand side in the figure that the
field lines bend away from the normal, and some return to the lower
medium. Fig. 7 show a field line pattern for a linear dipole. On the right
in the figure, energy is flowing along field lines running towards the
interface. A circulation appears with a vortex at the center, indicated by
a little circle. A second vortex appears along the dipole axis, just below
the interface, and in between the vortices all energy is flowing from
the ENZ medium into the dielectric. It is clear from Figs. 6 and 7 that
energy flows into the ENZ material, and not only for field lines under
normal incidence (as for static optics). Radiative energy penetrates the
ENZ medium, and the field lines of energy flow connect smoothly with
the field lines in the dielectric.

6. Perpendicular dipole

We now consider the simplest case of a dipole oscillating perpendic-
ular to the surface. We then have �̂� = 𝐞𝑧, and the transmitted electric
and magnetic fields become

�̃�𝑡 = 𝐞𝑧T (3)
𝑝 + 𝐞𝜌T (4)

𝑝 , (33)

�̃� = 0. (34)
𝑡

4

Fig. 6. The figure shows the flow lines of energy for a counterclockwise rotating dipole
(𝑢𝑦 = 1∕

√

2, 𝑢𝑧 = 𝑖∕
√

2) for 𝜀1 = 1 and ℎ = 2.

Fig. 7. Shown are the flow lines of energy for a linear dipole, oscillating under 45◦

with the z axis. The parameters are 𝜀1 = 1 and ℎ = 2.

Most notably, the magnetic field is identically zero in the ENZ medium,
and therefore the Poynting vector is zero. There is no energy flow in
the ENZ material. Fig. 8 shows the field lines of the Poynting vector
for a perpendicular dipole. The field lines emanate from the dipole, but
none of the field lines that go up enter the medium. On approach of the
ENZ material, they bend, and flow away along the interface. It should
be noted that for a perpendicular dipole the system is rotationally
symmetric around the z axis, so the field lines off the yz plane, and
in a plane through the z axis, are identical to the field lines in Fig. 8.

7. Electric field

Even though there is no magnetic field and no energy flow in the
ENZ material for a perpendicular dipole, there is an electric field, given
by Eq. (33). The time-dependent field is

𝐄(𝐫, 𝑡) = 𝜁Re[�̃�(𝐫)𝑒−𝑖𝜔 𝑡], (35)
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Fig. 8. The figure shows the flow line pattern for a perpendicular dipole. The
parameters are 𝜀1 = 1 and ℎ = 2.

Fig. 9. The figure shows field lines of the electric field at 𝑡 = 0 for 𝜀1 = 1 and ℎ = 10.

and so Re[�̃�(𝐫)] is the field at 𝑡 = 0, apart from an overall constant. Fig. 9
shows the field lines of the electric field at 𝑡 = 0. Near the dipole it has
the familiar lobe structure. As seen from the figure, tiny vortices appear
just below the interface on the left and the right in the picture. It seems
that in the ENZ medium the field lines run predominantly towards the
interface. However, the field is oscillating, so at a later time the field
lines change direction.

Field lines of a vector field are determined by the direction of the
field at each point, so the figures do not give any information about the
strength of the field. In order to determine how rapidly the fields decay
in the upward direction, we consider the limit ℎ → 0. The auxiliary
functions in Eq. (33) become

T (3)
𝑝 (𝜌, 𝑧) = 2

𝜀1 ∫

∞

0
𝑑𝛼 𝛼2𝑒−𝛼𝑧𝐽0(𝛼𝜌), (36)

T (4)
𝑝 (𝜌, 𝑧) = 2

𝜀1 ∫

∞

0
𝑑𝛼 𝛼2𝑒−𝛼𝑧𝐽1(𝛼𝜌), (37)

and these can be evaluated in closed form. The result is

T (3)
𝑝 (𝜌, 𝑧) = 2

𝜀1
1
𝑞5

(2𝑧2 − 𝜌2), (38)

T (4)(𝜌, 𝑧) = 2 1 3𝜌𝑧, (39)
𝑝 𝜀1 𝑞5 g

5

Fig. 10. Shown are the field lines of the electric field in the ENZ medium at 𝑡 = 0 for
𝜀1 = 1 and ℎ = 0. Across the dashed lines the electric field is horizontal.

with

𝑞 =
√

𝜌2 + 𝑧2, (40)

as the dimensionless distance between the origin of coordinates and
the field point. The complex amplitude of the electric field in the ENZ
medium becomes

�̃�𝑡 =
2
𝜀1

1
𝑞5

[(2𝑧2 − 𝜌2)𝐞𝑧 + 3𝜌𝑧𝐞𝜌], (41)

nd this field is real. The 𝜌 component is positive, so the vectors point
way from the 𝑧 axis.

The z component changes sign at 𝑧 = 𝜌∕
√

2. For 𝑧 < 𝜌∕
√

2 the z
component is negative, so the vectors point towards the interface, and
for 𝑧 > 𝜌∕

√

2 the vectors point up. At the borderline 𝑧 = 𝜌∕
√

2 the
lectric field is horizontal. Fig. 10 shows the field lines, and the dashed
ines are the 𝑧 = 𝜌∕

√

2 lines.
Of particular interest is the behavior of the field for large 𝑧, so deep

n the material. We find from Eq. (41)

̃
𝑡 =

4
𝜀1

1
𝑧3

𝐞𝑧 +⋯ 𝜌 fixed, 𝑧 large. (42)

The electric field is asymptotically in the positive z direction, and it
falls off as 1∕𝑧3. It is interesting to note that the integrals in Eqs. (36)
and (37) are superpositions of evanescent waves, exp(−𝛼𝑧). The sum,
owever, falls off algebraically as 1∕𝑧3. All partial waves in the angular

spectrum are evanescent, but their sum only decays algebraically, and
has a long tail into the ENZ medium.

8. Conclusions

It is commonly perceived that no radiation can penetrate an ENZ
material, except as evanescent waves. These waves decay exponentially
with the distance to the interface, and propagate along the interface.
An exception is static optics. A plane wave under normal incidence
penetrates the medium. In the medium, an oscillating electric field
exists, without spatial dependence, and no energy flow is associated
with this electric field. We have considered electric dipole radiation,
emitted near the interface with an ENZ medium. This radiation is a su-
perposition of traveling and evanescent plane waves, and when incident
upon the interface, all partial waves transmit as evanescent waves. The
static optics waves do not contribute to the transmitted fields, because
they have zero measure in an angular spectrum representation. We
have evaluated the electric and magnetic fields in the ENZ medium,
and we found that the limit 𝜀2 → 0 exists (due to the limit shown
n Eq. (38)). Energy in the medium flows along the field lines of the
oynting vector, and typical examples of flow lines are shown in Figs. 6
nd 7. In particular Fig. 7 shows clearly that energy which enters the
edium at one point returns to the dielectric at another point. This

hould be so, because the total power crossing the interface is zero, on
eneral grounds.



H.F. Arnoldus Optics Communications 489 (2021) 126867

c
t
z
i
b
t
w
s
n
A

T

T

T

T

T

t
s
t
𝑛

R

For a dipole oscillating perpendicular to the interface, no energy
rosses the interface anywhere, as seen in Fig. 8. This is due to the fact
hat for this case the magnetic field in the ENZ medium is identically
ero. There is, however, an electric field in the ENZ material, as
llustrated in Figs. 9 and 10. For this situation, the electric field can
e evaluated in closed form, and we found that it falls off as the
hird power of the distance to the interface. Apparently, the evanescent
aves that make up this field add up to an algebraic decay. This

eems counterintuitive, but this already happens for the electromag-
etic Green’s tensor in free space, and without any boundaries [26,27].
long the z axis, the evanescent waves add up to a field that decays

as 1∕𝑟 in a cylindrical region around the z axis. For an ENZ medium,
we have found that the evanescent waves of dipole radiation add up
to algebraically decaying waves everywhere in the material. We have
shown this explicitly for the electric field of a perpendicular dipole,
but this holds in general for the electric and magnetic fields of a dipole
with arbitrary orientation. Then also a magnetic field penetrates the
material, and consequently there is an energy flow throughout the ENZ
medium, as illustrated in Figs. 6 and 7.
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Appendix. Single interface formulas

Here we list the necessary formulas for the solution for an interface
with a medium of arbitrary 𝜀2, and for a field point in the yz plane.
The associated functions are defined as

𝑟𝜎 (𝛼, 𝑧) = 𝑅𝜎 𝑒
𝑖 𝑣1(ℎ−𝑧), (A.1)

𝑡𝜎 (𝛼, 𝑧) = 𝑇𝜎
1
𝑣1

𝑒𝑖(𝑣1ℎ+𝑣2𝑧), (A.2)

with 𝜎 = 𝑠, 𝑝. The needed auxiliary functions are

R (1)
𝑠 (𝜌, 𝑧) = 𝑖

2 ∫

∞

0
𝑑𝛼 𝛼

𝑣1
𝑟𝑠(𝐽0 + 𝐽2), (A.3)

R (4)
𝑠 (𝜌, 𝑧) = − 𝑖

2 ∫

∞

0
𝑑𝛼 𝛼 𝑟𝑠𝑣1(𝐽0 + 𝐽2), (A.4)

T (1)
𝑠 (𝜌, 𝑧) = 𝑖

2 ∫

∞

0
𝑑𝛼 𝛼 𝑡𝑠(𝐽0 + 𝐽2), (A.5)

T (4)
𝑠 (𝜌, 𝑧) = 𝑖

2 ∫

∞

0
𝑑𝛼 𝛼 𝑡𝑠𝑣2(𝐽0 + 𝐽2), (A.6)

R (1)
𝑝 (𝜌, 𝑧) = − 𝑖

2𝑛21
∫

∞

0
𝑑𝛼 𝛼 𝑟𝑝𝑣1(𝐽0 − 𝐽2), (A.7)

R (3)
𝑝 (𝜌, 𝑧) = 𝑖

𝑛21
∫

∞

0
𝑑𝛼 𝛼

𝑣1
𝑟𝑝𝛼

2𝐽0, (A.8)

R (4)
𝑝 (𝜌, 𝑧) = − 1

𝑛21
∫

∞

0
𝑑𝛼 𝛼 𝑟𝑝𝛼𝐽1, (A.9)

R (6)(𝜌, 𝑧) = 𝑖 ∞
𝑑𝛼 𝛼 𝑟𝑝(𝐽0 − 𝐽2), (A.10)
𝑝 2 ∫0

6

R (7)
𝑝 (𝜌, 𝑧) = ∫

∞

0
𝑑𝛼 𝛼

𝑣1
𝑟𝑝𝛼𝐽1, (A.11)

T (1)
𝑝 (𝜌, 𝑧) = 𝑖

2𝑛1𝑛2 ∫

∞

0
𝑑𝛼 𝛼 𝑡𝑝𝑣1𝑣2(𝐽0 − 𝐽2), (A.12)

(3)
𝑝 (𝜌, 𝑧) = 𝑖

𝑛1𝑛2 ∫

∞

0
𝑑𝛼 𝛼 𝑡𝑝𝛼

2𝐽0, (A.13)

(4)
𝑝 (𝜌, 𝑧) = 1

𝑛1𝑛2 ∫

∞

0
𝑑𝛼 𝛼 𝑡𝑝𝛼𝑣2𝐽1, (A.14)

(5)
𝑝 (𝜌, 𝑧) = 1

𝑛1𝑛2 ∫

∞

0
𝑑𝛼 𝛼 𝑡𝑝𝛼𝑣1𝐽1, (A.15)

(7)
𝑝 (𝜌, 𝑧) =

𝑖𝑛2
2𝑛1 ∫

∞

0
𝑑𝛼 𝛼 𝑡𝑝𝑣1(𝐽0 − 𝐽2), (A.16)

(8)
𝑝 (𝜌, 𝑧) =

𝑛2
𝑛1 ∫

∞

0
𝑑𝛼 𝛼 𝑡𝑝𝛼𝐽1. (A.17)

Here, 𝐽𝑘 = 𝐽𝑘(𝛼𝜌). The numerical evaluation of these integrals is far
from trivial, partially because of the factor 1∕𝑣1 in several integrands.
We have 𝑣1 = 0 for 𝛼 = 𝑛1, so some integrands have a singularity on
the integration axis. Furthermore, 𝑣1 has a branch point at 𝛼 = 𝑛1, and
his branch point appears in exponents in Eqs. (A.1) and (A.2). These
ingularities and branch points can be transformed away by splitting
he integrals in their traveling (range 0 ≤ 𝛼 < 𝑛1) and evanescent (range
1 < 𝛼 < ∞) parts, and then make a change of variables in each [28].
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